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Abstract

Advances in wireless communication together with the growing number of mobile end devices hold
the potential of ubiquitous access to sophisticated internet services; however, such access must cope with
an inherent mismatch between the low-bandwidth, limited-resource characteristics of mobile devices and
the high-bandwidth expectations of many content-rich services. One promising way of bridging this gap
is by deploying application-specific components on the path between the device and service, which
perform operations such as protocol conversion and content transcoding. Although several researchers
have proposed infrastructures allowing such deployment, most rely on static, hand-tuned deployment
strategies restricting their applicability in dynamic situations.

In this paper, we present an automatic approach for the dynamic deployment of such transcoding
components, which can additionally be dynamically reconfigured as required. Our approach relies on
three components: (a) a high-levelintegrated type-based specification of components and network re-
sources, essential for “late binding” components to paths; (b) anautomatic path creation strategythat
selects and maps components so as to optimize a global metric; and (c)system support for low-overhead
path reconfiguration, consisting of both restrictions on component interfaces and protocols satisfying
application semantic continuity requirements. We comprehensively evaluate the effectiveness of our ap-
proach over a range of network and end-device characteristics using both a web-access scenario where
client performance is for reduced access time, and a streaming scenario where client preference is for in-
creased throughput. Our results verify that (1) automatic path creation and reconfiguration is achievable
and does in fact yield substantial performance benefits; and (2) that despite their flexibility, both path
creation and reconfiguration can be supported with low run-time overhead.

1 Introduction

The role of the Internet has undergone a transition from simply being a data repository to one providing
access to a plethora of sophisticated network-accessible services such as e-mail, banking, on-line shopping
and entertainment. Additionally, these services are increasingly being accessed by mobile consumers using
end devices such as PDAs, Pocket/Handheld PCs, cellular phones and two-way pagers that connect to the
internet using a variety of wireless networking options ranging from Bluetooth [7] to Wireless 3G [18].
The combination of these two trends holds out the possibility of providing a user with seamless, ubiquitous
access to a service irrespective of the user’s end device and location. Although compelling, achieving this
goal requires coping with the inherent mismatch between the low-bandwidth, limited resource characteristics
of wireless mobile devices and the high-bandwidth expectations of many content-rich services.

This mismatch is particularly troublesome given the existing view, which hides network characteris-
tics from the application and treats services as standalone entities. A typical mobile user is connected to
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the internet through multiple types of links with very different bandwidth, delay, and error characteristics
ranging from a high-bandwidth WAN link between the central server and an edge server, a broadband link
between the edge server and the wireless network the user is on, finally to the wireless link connecting the
user’s device to this network. These differences, combined with the fact that the nodes along the path can
also possess very different capabilities (most true of the end device) produce unsatisfactory performance for
network-oblivious applications.

Current day applications and services cope with the above problems essentially by providing differ-
entiated service for different networks/end-devices. For example, most popular news, e-mail, and stock
trading services today present a different front-end for mobile users. Although adequate in some scenar-
ios, this approach suffers from the limitation that mobile users are classified into a small number of classes
and may not receive performance commensurate with the capabilities of the device or network they are us-
ing. More importantly, such an approach cannot adequately cope with dynamically changing environments
where there is a big variation in available bandwidth (e.g., a user on a wireless LAN who is at different
distances from an access point). More promising are programmable infrastructures recently proposed by
several researchers [5, 6, 22], which allow the dynamic injection of application-specific components in the
network path; these components cope with device and network mismatches by handling activities such as
protocol conversion and content transcoding at sites best suited for them.

Although several such infrastructures have been proposed, they have not seen widespread use because
of concerns about their deployability, performance, and scalability. Chief among these concerns, and the
focus of this paper, is the question of automatically determining which components must be present along
a path at any time to cope with (possibly dynamically changing) network and device characteristics and
differing user contexts. This problem has received a great deal of attention recently [6, 16, 15, 9, 12], with
suggested solutions broadly falling into two categories: those that lookup a database of precomputed paths
for the best match to a given network situation [16, 12], and those that dynamically search the space of all
possible data paths to find either a reasonable or optimal path [6, 16, 15, 9]. The first set of solutions offer
reduced path set up times at the cost of optimality, flexibility, and adaptability. The second set of solutions
has so far focused mostly on ensuring that the components arefunctionally compatiblein that they are able
to take data produced by the source and convert it to a form consumable by the end device. However, such
solutions have tended to neglect dynamic and heterogeneous network characteristics, with the consequence
that the performance of the generated path falls well short of satisfying user expectations.

In this paper, we address these shortcomings by describing an automatic approach for deploying network-
aware access paths that can additionally be dynamically configured as required. Our approach relies on three
components:

• A high-level type-based specification of components and network resources, which both reduces the
burden on the component developer (who can focus on functionality without worrying about how a
component is going to be used along a path) and more importantly enables “late binding” of compo-
nents to paths, essential for flexibility. While some other researchers have proposed similar formula-
tions, what distinguishes our approach is that the same type-based framework is also used to capture
the characteristics of network resources. For example,network links are represented simply as entities
that transform the type of data passing across them.

• An automatic path creation strategy, which finds a type-compatible component sequence that trans-
forms the data type produced at the service into a type that can be consumed by the client device, and
additionally respects network resource constraints. Our strategy relies on a dynamic programming-
based polynomial-time algorithm that optimizes a global metric (available client throughput or re-
sponse time) by determining both which components constitute the sequence and how they are mapped
to underlying network resources.

• System support for low-overhead path reconfiguration, which includes restrictions on component in-
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terfaces and efficient protocols that leverage these restrictions to support three different reconfigura-
tion semantics: no continuity, continuity at the level ofsemantic segments, and full continuity.

We have implemented the three components of our approach in the CANS infrastructure, a Java-based
application-level infrastructure for constructing network-aware access paths. We comprehensively evaluate
the effectiveness of our approach, in terms of both the performance of the constructed paths as well as
the overheads associated with path creation and reconfiguration, under multiple network and end-device
characteristics reflecting typical mobile use situations for both a web access scenario where user preference
is for reduced access time, and a streaming scenario where client preference is for increased throughput.
Our results verify that (1) automatic path creation and reconfiguration is achievable and does in fact yield
substantial performance benefits; and (2) that despite their flexibility, both path creation and reconfiguration
can be supported with low run-time overhead.

The rest of this paper is organized as follows. Section 2 presents an overview of the CANS infrastructure.
The framework of component and link types is described in Section 3 and Section 4 presents our planning
algorithm that builds on this framework. 5 describes the system support for path reconfiguration. Section 6
evaluates this algorithm with the help of two case studies. We discuss related work in Section 7 and conclude
in Section 8.

2 Background: CANS Infrastructure

ComposableAdaptiveNetworkServices (CANS) is an application-level infrastructure for injecting application-
specific components into the network path between a client and a service. Traditionally, the functionality of
a data path is restricted to transmitting data between the end points. The CANS infrastructure extends this
notion to enable end services, client applications, or some other entity to dynamically inject application-
specific components into the network; these components customize the data path with respect to the char-
acteristics of the underlying physical network links and properties of the end device as well as dynamically
adapt to any changes in these characteristics (see Figure 1(a)).
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Figure 1: (a) Basic organization of CANS, (b) Interaction between legacy applications and CANS architec-
ture.

The CANS network view consists ofapplications, statefulservices, anddata pathsbetween them built
up from mobile soft-state objects calleddrivers. Drivers implement a restricted interface (for example,
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reading and writing data from an implementation-neutral data port interface), which permits efficient com-
position and semantics-preserving adaptation. Both services and data paths can be dynamically created
and reconfigured: a planning and event propagation facility enables distributed adaptation, and a flexible
type-based composition model dictates how new services and drivers are integrated with existing ones. The
type-based compatibility framework is described in additional detail in Section 3. The CANS network is
realized by partitioning the services and data paths onto physical hosts, connected using existing communi-
cation mechanisms. The CANS Execution Environment serves as the basic run-time environment on these
hosts and consists of several modules as shown in Figure 1(b). The plan manager implements the planning
algorithm described in Section 4, and together with the other modules, supports dynamic creation, migra-
tion, and adaptation of drivers and services. CANS has been implemented on Windows 2000 clients and
Java/RMI-capable intermediate hosts.

CANS distinguishes itself from other infrastructures permitting component injection by (a) support-
ing legacy applications and services, and (b) enabling configuration and distributed adaptation of injected
components in response to system conditions.

Legacy applications interface with the injected components using aninterception layer(see Figure 1(b))
that transparently virtualizes the network bindings of the application, in our case TCP sockets. Logically,
data to and from the application using a particular socket is sent via multiple CANS components, while
retaining the illusion from the application’s perspective of an end-to-end TCP connection. Legacy services
are just as easily integrated; adelegate objectcontrols and represents a service in its interactions with the
CANS infrastructure.

CANS configures data paths that are customized to network characteristics and user preferences (e.g.,
minimum response time or maximum throughput) by selecting and deploying an appropriate sequence of
components. CANS also supports incremental reconfiguration of data paths in response to dynamic changes
in system characteristics. Such reconfiguration, which is accomplished without violating the semantics of
the data path, leverages two restrictions placed on driver functionality. The first restriction, of having drivers
consume and produce data in application-specific units calledsemantic segments, permits the system to keep
track of which data units at the input to a data path segment influence the data units arriving at the output
of the segment. The second restriction, requiring drivers to contain onlysoft state, permits the system to
reconfigure a data path simply by buffering and retransmitting appropriate semantic segments via freshly
created drivers. Additional description of the reconfiguration algorithm can be found in Section 4.

The overall CANS architecture has been presented in a prior publication [5]. In this paper, we describe
in additional detail the type framework underlying component composition and the planning algorithm for
setting up and reconfiguring data paths.

3 Component Selection as Type Compatibility

We formulate the problem of determining which application-specific components must lie on the data path
connecting an end device to the service to best cope with any mismatches in network and device character-
istics as atype compatibilityproblem. Central to this formulation is the notion that all data flowing along a
data path istyped, and that this type is affected both by components along the data path as well as network
links making up the route. Component selection then becomes the problem of finding an appropriate selec-
tion of components that can be mapped to physical resources in a fashion that permits the data type produced
at the service to be transformed into a data type that can be consumed by a client application running at the
end device, taking into consideration the type changes induced because of network links along the route.
Additional criteria driving the selection include satisfying constraints imposed by node and link capacities
and optimizing some overall path metric such as response time or throughput.
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In the rest of this section, we describe in turn the type-based representation of components and links.

3.1 Representing Component Properties

The composability of CANS components (both drivers and services) is decided by compatibility of the type
information associated with the input and output ports being connected. The types used in CANS integrate
two closely related concepts:data typesandstream types.

CANS data types are the basic unit of type information, represented by a type object that in addition to a
unique type name can contain arbitrary attributes and operations for checking type compatibility. Traditional
mechanisms such as type hierarchies can still be used to organize data types; however, our scheme permits
flexible type compatibility relationships not easily expressibly just by matching type names. For instance, it
is possible to define a CANS type for MPEG data, which contains attributes for defining the frame size. An
MPEGtype can be defined compatible with anotherMPEGtype as long as the former’s frame size is smaller
than the latter’s, naturally capturing the behavior that a lower resolution MPEG stream can be played on a
client platform capable of displaying a higher resolution stream.

CANS stream types capture the aggregate effect of multiple CANS drivers operating upon a typed data
stream. Stream types are constructed at run time, and representable as astackof data types. Operations
allowed on stream types includepush, pop, peek,andclone, which have the standard meanings.

Each CANS component withm input ports andn output ports defines a function, which maps its input
stream types into output stream types:

f(Tin1 , Tin2 , ..., Tinm) → (Tout1 , Tout2 , ..., Toutn)

whereTini is the required stream type set for theith input port, andToutj is the resulting stream type
produced on thejth output port. The type compatibility between an input and an output port, which deter-
mines whether two components can be connected, is determined by checking the top of the output port’s
stream type against the required data type of the input port. Stream type information flows downstream
automatically when two ports get connected at run time.

MPEG512x256EncryptedBaseStream

Src Encryption SinkDecryption
MPEG500x200

MPEG500x200

Encrypted

MPEG500x200

Figure 2: A simple example of type compatibility.

Figure 2 shows an example of the type compatibility scheme. The source produces MPEG data at
resolution500 × 200, which needs to be supplied to the sink that can consume MPEG data at resolution
512 × 256 after going through two components that respectively encrypt and decrypt the data. The figure
shows the data types on each of the ports as well as the stream types on the connections. To consider an
example, theEncryptiondriver accepts data typeBaseStream and pushes anEncrypted type object
onto the incoming stream type. The output port ofSrc is compatible with the input port ofEncryption
because theMPEGtype object extends theBaseStream type. Similarly, the output port ofDecryption,
whose affect is to pop theEncrypted type from its incoming stream type, is compatible with the input
port of Sinkbecause of a type-specific compatibility operator for theMPEGtype that looks at the resolution
attributes.
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Figure 2 also highlights the composition advantages of representing stream types as a stack of data
types. If components were just modeled as consuming data of a particular type and producing data of
another type, it would be difficult to express the behavior of theEncryptionandDecryptiondrivers in a
way that permits their use for a variety of generic stream typeswithoutlosing information about the original
stream type at the output of theDecryptiondriver. Thus, determining whether theDecryptiondriver’s output
port is compatible with the input port onSinkwould require examining the entire data path. In contrast, our
stream type representation permits local decision making, a prerequisite for run-time adaptation via dynamic
component composition.

3.2 Representing Link Properties

The properties of links making up the route between a service and a client application very closely impact
which components must be selected in order to satisfy user preferences. For example, if the route between
the service and the user includes an insecure link, the data needs to be encrypted (i.e., pass through an
encryption component) prior to crossing this link if the path has to satisfy user preferences of security.
Similarly, if a continuous media stream need be transmitted across links where it is not possible to bound
jitter, there needs to be a component downstream of the link that can reinstate the real-time property of the
stream. Despite recognition of this close coupling, prior research has usually modeled links in an ad hoc
fashion inserting components required because of link properties as a separate pass after type-compatibility
based selection. While this approach works, it compromises on optimality because of poor or redundant
placement of these required components.

In contrast, our approach unifies both type compatibility and link properties in selecting which com-
ponents need to be present. The basic idea is to represent link requirements implicitly by modeling how
links effect the types of data that go across them. To capture the effect of link properties on data types,
we introduce the notion of anaugmented type: each data type is extended with a set of link properties
that can take values from a fixed set such as security, reliability, and timeliness. Network links are mod-
eled in terms of the same properties and have the effect of modifying, in a type-specific fashion, values of
the corresponding properties associated with different data types. To consider an example, consider trans-
mission of HTML data over an insecure link. Our type framework captures this as follows: the data type
produced at the source is represented byHTML(secure=true ), the network link is represented by the prop-
erty secure=false , and the effect of the link propertysecureon theHTMLdata type by the rule that the
augmented typeHTML(secure=true ) is modified toHTML(secure=false ) upon crossing a link with the
propertysecure=false .

This base scheme is extended to stream types by introducing the notion ofisolation. Stated informally,
some data types have the capability to isolate others below them in the stream’s type stack from having their
properties be affected by a link. For example, theEncrypted type isolates thesecureproperty of types
that it “wraps”, i.e., encrypted data still remains secure after crossing insecure links, irrespective of what
specific type(s) the data corresponds to.

3.3 Example: Access to Streaming Media

Given the type framework described above, component selection is driven by four pieces of information:
data type definitions, component properties described in terms of input and output types, links modeled in
terms of their link properties, and rules governing how data types are modified by links. We describe these
components for an example scenario where a mobile user who is connected to the internet with both wired
and wireless connectivity options (e.g., a laptop capable of both connected and mobile operation) accesses
a media stream from an internet-based server. The usage scenario consists of the user starting off using
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the wired connection but switching across to the wireless connection in the middle. The user preference
is to receive a continuous real-time stream which is guaranteed transmitted in a secure fashion inspite of
the connection transition and limited security of the wireless link. These user preferences are handled by
using the CANS infrastructure to automatically deploy components, which insulate the application from
the switch in connections and offer required security guarantees. The type components of this example are
described below:

BaseStream {
    bool secure;
}

Image::BaseStream {
   int2D res;
}

 Encrypted::BaseStream

(a)

properties
secure reliable realtime

wired T F F
wireless F T F

(b)

secure reliable realtime
T F T F T F

Media — F — F — F
RStream — F T* T* — F
Encrypted T* T* — F — F

—: no change *: effect isolation
(c)

components Input & output type

Media
player
(sink)

media:{
    realtime = T;
    reliable = T;
    secure = T;
}

bbc.com
video:{
    realtime = T;
    reliable = T;
    secure = T;
}

splitter videoaudio

padder
media:{
    realtime = *;
    }

media:{
    realtime = T;
 }

encryption
*

Encrypted

*

decryption
Encrypted

*
*

reconnecter
(src) *

RStream

*

RStream

**
reconnecter

(dest)

(d)

Figure 3: Types in the streaming media example: (a) data type definitions; (b) link properties; (c) effect of
link properties on augmented types; and (d) input and output types of components.

Figure 3(a) shows the data type definitions.BaseStream is the basic stream type with three boolean
link properties,reliable, secureand realtime. RStream , Media , andEncrypted extend theBaseS-
tream type, representing reliable, media, and encrypted streams respectively.Video andAudio are two
subtypes of theMedia type. The non-media types are produced and consumed by auxillary components
described below.

Figure 3(b) shows the properties of the wired and wireless links. The wired link is modeled withreliable
and realtime properties set tofalse to capture the fact that it can get disconnected during the access.
Figure 3(c) shows how these link properties affect different types, with “effect isolation” referring to a type
isolating the effect of a link property for data type instances below it in the type stack. For example, the
security property of theEncrypted type is unaffected when data of such type traverses an insecure link.
Moreover, the type isolates this effect on any of the wrapped types.

Figure 3(d) lists the input/output types of six components, along with the types produced by the source
and that required by the sink. Thesplittercomponent splits a video+audio stream into an audio-only stream
while thepadder“fills in” legal media frames whenever its input stream stops. The behavior of the padder
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component is represented by the transformation of its input type (RStream with an arbitrary value associ-
ated with therealtimeproperty) into its output type (RStream with realtime=true ). The other components
cooperate to handle encryption (encryptionanddecryption) and reliable transmission (reconnecter(src)and
reconnecter(dest)) respectively. These components are required to overcome unfavorable link properties
associated with the wired and wireless links, specifically thesecureandreliableproperties.

Thus, legal type-compatible component sequences for transmitting the media stream to the client in-
clude:

• (using the wired link) Thereconnecter(src)—reconnecter(dest)—paddersequence, when link capac-
ities are sufficient for transmission of the original video+audio stream to the client. When link ca-
pacities are not sufficient, the sequence would need to include thesplitter component at a location
determined by the bottleneck link.

• (using the wireless link) Theencrypter—reconnecter(src)—reconnecter(dst)—decrypter—padderse-
quence, when link capacities are sufficient to transmit video+audio to the client. As before, when not
enough capacity is present, the sequence would need to include thesplittercomponent.

Section 6 shows, for a web page access scenario, how given such high-level type specifications, our
planning algorithm automatically chooses an optimal sequence and maps it to underlying resources.

4 Selection and Mapping of Components

The goal of the CANS planning algorithm is to select and map a type-compatible set of components to the
underlying network resources in response to a request from a client application to connect to an end service.
The planning procedure, implemented by the plan manager component of the execution environment, con-
sists of two steps:route selectionwhere a graph of nodes and links is selected for deploying the plan, and
component selectionwhere appropriate components are selected and mapped to the selected route.

Route selection can be viewed as the shortest path problem in the node graph, which takes into consid-
eration bandwidth on links between nodes in different domains and the relative loads on nodes within the
same domain. Given the large amount of literature available on similar problems, we will not discuss this
further.

The component selection process, described in additional detail below, takes as input the augmented
type at the data source, the augmented type required at the sink, and the selected route (whose links may
transform augmented types as described earlier). In this paper, we restrict our attention to single input,
single output components; i.e., all selected plans consist of a sequence of components. We use a dynamic
programming algorithm to simultaneously select a component and map it to the route in a fashion that
optimizes overall throughput. For clarity of presentation, we first describe a base version of the algorithm
where only simple (non-stacked) data types are present and linksdo notaffect the type of data crossing
them, and then discuss how this base algorithm can be extended to handle the more general case of stream
types and link properties. We conclude this section by describing the path reconfiguration process.

4.1 Base Algorithm

To describe the dynamic programming algorithm, we first need to introduce some terminology.

A driver component d is modeled in terms of itscomputation load factor, load(d), and itsbandwidth
impact factor, bwf(d). load(d) captures the per-input byte cost of running the component, whilebwf(d)
reflects the average ratio of input and output bandwidths. For example, a compression component that
reduces stream bandwidth by a factor of two has abwf = 0.5.
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A data path, D = {d1, . . . , dn}, is a sequence of type-compatible components, as defined in Section 3.
A type graph formalizes this notion: vertices in the graph represent types, and edges represent components
that can transform the type of one vertex to the type of the other. There might be multiple edges between two
vertices in the type graph; the degree of a vertex does not exceed the number of components in the system.

A route, R = {n1, n2, . . . , np}, is a sequence of nodes obtained using the route selection algorithm.
R(ni, nj) refers to the subsequence starting at nodeni and ending at nodenj . Each nodeni is modeled in
terms of itscomputation capacity, comp(ni), which represents the number of operations that the node can
perform per unit time. A link between two nodes,lij , is modeled in terms of its bandwidth,bw(lij).

A mapping, M : D → R, associates components on data pathD with nodes in routeR. We are only
interested in mappings that satisfy the following restriction:M(di) = nu,M(di+1) = nq ⇒ u ≤ q; i.e.,
components are mapped to nodes according to sequence order. This is a reasonable assumption for data
paths crossing multiple networking domains.

The component selection process takes as its input a routeR, a source data typets, a destination data
typetd, and attempts to find a data pathD that transformsts to td and can be mapped toR to yield maximum
throughput.

The problem as stated above is NP-hard. To make the problem tractable, we view the computation
capacity as partitionable into adiscretenumber of load intervals; i.e., capacity is allocated to components
only at interval granularity. Not only is this assumption practical, but it also allows us to define, for a route
R, the notion of anavailable computation resource vector, ~A(R) = (r1, r2, . . . , rp), whereri reflects the
available load intervals on nodeni (normalized to the interval [0,1]). For this algorithm, we are interested
only in a subset of all possible vectors that have the pattern{1, . . . , 1, ri, 0, . . . , 0}. Informally, these legal
vectors represent situations of a left-to-right allocation strategy, where only a single node in the route is
being considered for mapping a component at a time, all nodes after it is not available . It can be easily
verified that the total number of such legal vectors isp × L, wherep is the number of nodes andL is the
number of the discrete load intervals.

Dynamic Programming Strategy
The algorithm builds up partial optimal solutions,s[t, ~A, k],∀t, ~A, k, where each such solution yields max-
imum throughput for transforming the source typets to an arbitrary intermediate typet, using a data path
with k components or fewer and requiring no more resources than~A. The dynamic programming strategy
defines how these solutions can be constructed in a bottom up fashion:

• Step 1 solutions simply consist of single-component paths (edges in the type graph) that transformts
into an arbitrary intermediate typet, and require no more than~A resources (for each~(A) for a given
routeR).

• To explain how the algorithm works, assume that Stepk − 1 solutions have been constructed. These
consist of optimal paths ofk− 1 or fewer components that transform the source type into an interme-
diate type while using no more than~A resources (for each~A). The dynamic programming step works
as follows.

• To construct a Stepk solution for a given typet and resource vector~A, consider all possible inter-
mediate typest′ that can be transformed tot; i.e., all those types for which an edge(t′, t) is present
in the type graph. For each sucht′, consider all possible mappings of the associated componentd on
nodes along the route that use no more than~A resources. For each such mapping that transforms the
available resource vector to~A′ (after accounting forload(d)), combine this component with the opti-
mal Stepk − 1 solutions[t′, ~A′, k − 1]. The combined mapping that yields the maximum throughput
is deemed the optimal Stepk solution.
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The throughput achievable for a particular mapping can be computed given the node throughput and
link bandwidth properties. The throughput of nodeni itself is decided by the incoming bandwidth, its
computation capacitycomp(ni, and theload andbwf properties of components mapped to the node. One
additional point needs some clarification: in the above algorithm, we need to know how much resources to
set aside for componentd before we can combined with an optimal Stepk − 1 solution. The problem here
is thatd’s resource requirementsload(d) are expressed in terms of per-input byte costs, and are difficult
to evaluate without knowing what the input bandwidth is, which itself is only known once the Stepk − 1
solution is selected. Our solution to break this cyclic dependency is to firstguessthe resource requirement of
d and then evaluate the throughput for this guess. The guess that yields the maximum throughput is picked
to reflectd’s resource usage. Note that because of discretized load levels, we only need to make a constant
number of guesses at each step.

The algorithm terminates at Stepkmax = p × n, wherep is the number of nodes andn is the number
of components. This follows from the observation that for real components, there is no throughput benefit
from mapping multiple components to the same node. The solution[td, ~Amax, kmax], if present, yields the
optimal selection and mapping of components to transformts to td along routeR. The complexity of this
algorithm isO(p3n3).

4.2 Extension 1: Handling Stream Types

Stacked stream types complicate the structure of the type graph, because the latter needs to capture the fact
that the same driver component can now be used to bridge among many different input types. For example,
a Zip compression driver can consume data of any type. One simple way of handling such stream types is
to insert nodes into the type graph that explicitly enumerate all possible stack configurations. In the above
example, there would be nodes such asZip-HTML andZip-MPEG corresponding to each data type passing
through theZip driver. Although this approach would correctly handle stacked types, it is not very practical
because the size of the type graph can be exponential in the number of simple data types.

To ensure that the type graph does not become intractably large, we employ two strategies. First, we
restrict the type graph to include only those stream types that are reachable from the source data type, and
which in turn can reach the destination type required by the client. Second, we rank the primitive data types
and introduce the constraint that only types of monotonically increasing ranks can be stacked into a stream
type. Such rank ordering not only reduces the size of the type graph, but can also be used to introduce
application-specific constraints on how CANS components can be composed. For instance, we can ensure,
for any CANS data path requiring both encryption and compression, that encryption always happens after
compression by giving the encryption type a higher rank. Similarly, and this is something that our web
access case study described in Section 6 exploits, we can capture requirements that say for instance that
image resizing (to reduce bandwidth requirements) should only be employed after image quality filtering.
In our case study, these two strategies reduce the size of the type graph to just3 when planning for the data
typemime/text and6 when planning for the data typemime/image . In contrast, the application drivers
repository included about twenty simple types that would have resulted in a substantially larger number of
nodes otherwise.

4.3 Extension 2: Dealing with Link Properties

The algorithm as described so far does not consider the possibility of network links affecting stream data
types. To cope with the latter, the algorithm needs to incorporate two modifications. First, the type graph
is now defined in terms of augmented types, making explicit the differences between streams that have the
same data type but different values of link properties such as security. Because both the number of such
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link properties as well as the set of values associated with each property are expected to be small, such
enumeration results in only a small increase in the size of the type graph.

The other modification is to the recursive step in the dynamic programming algorithm described above.
In particular, when developing Stepk solutions, the optimal Stepk − 1 solution that is combined with the
selected one-component partial mapping must take into consideration possible type translations because of
an intermediate link. In other words, for a given intermediate typet′, we now need to consider all solutions
s[t′′, ~A′, k − 1] wheret′′ is translated by the link intot′. This modification does not change the overall
complexity of the algorithm.

5 System Support for Efficient Path Reconfiguration

Network-aware access paths need to be reconfigured to cope with dynamic changes in user preferences or
network resource characteristics. Our approach relies on two kinds of system support to enable low-overhead
reconfiguration: (1) appropriate restrictions on component interfaces, and (2) reconfiguration protocols that
leverage these restrictions. In this section, we first describe the reconfiguration semantics supported by
CANS, and then the required system support.

5.1 Reconfiguration Semantics

The central question about reconfiguration is what can the application assume about data in transit or
buffered within components when a portion of the network path is reconfigured. CANS reconfiguration
protocols can be customized to provide three levels of semantics:

• Case 1semantics provides no guarantees, leaving it up to the application to reconstruct any lost data.
Applications involving non-critical data (e.g., news feeds) can exploit in-order delivery guarantees to
perform efficient recovery.

• Case 2semantics provides the guarantee of delivering completesemantic segments, essentially sim-
plifying the task of the application recovery code. Semantic segments represent application-specific
notions of a useful granularity of data. For example, in a streaming media application, a semantic seg-
ment might correspond to individual frames. Case 2 semantics ensure that a frame is either completely
delivered or not delivered at all.

• Case 3semantics provide full continuity guarantees with exactly-once semantics, completely isolating
the application from the fact that the path has been reconfigured. Note that real-time applications can
still detect a break in data availability; we take the view that such applications are best handled by
inserting additional application-specific components that provide necessary timeliness guarantees.

5.2 Restrictions on the Driver Interface

To guarantee the above semantics, drivers are required to adhere to a somewhat restricted interface. Specif-
ically,

1. Drivers are written to consume and produce data using a standard typeddata portinterface, called a
DPort .

2. Drivers arepassive, moving data from input ports to output ports in a purely demand-driven fashion.
Driver activity is triggered when one of its output ports is checked for data, or one of its input ports
receives data.

3. Drivers consume and produce data at the granularity of an integral number of application-specific
semantic segments. These segments are naturally defined based on the application, e.g., an HTML
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page or an MPEG frame. This requirement ensures that the CANS infrastructure is made aware of
“markers” in the data stream, which it uses to guarantee Case 2 and Case 3 semantics. Note also that
this property only refers to the logical view of the driver, and admits physical realizations that transmit
data at any convenient granularity as long as segment boundaries are somehow demarcated (e.g., with
marker messages).

4. Drivers contain onlysoft state, which can be reconstructed simply by restarting the driver. Stated
differently, given a semantically equivalent sequence of input segments, a soft-state driver always
produces a semantically equivalent sequence of output segments. For example, a Zip driver that
produces compressed data will produce semantically equivalent output (i.e., uncompressed to the
same string) if presented with the same input strings.

The first two properties enable dynamic composition and efficient transfer of data segments between
multiple drivers that are mapped to the same physical host (e.g., via shared memory). Moreover, they permit
driver execution to be orchestrated for optimal performance. For example, a single thread can be employed
to execute, in turn, multiple driver operations on a single data segment, achieving nearly the same efficiency
as if driver operations were statically combined into a single procedure call. The semantic segments and
soft-state properties enable low-overhead path reconfiguration as described in additional detail below, while
preserving application semantics.

5.3 Reconfiguration Protocol

Path reconfiguration is triggered by events generated either by the CANS execution environment, which
monitors network resource characteristics, or by a component that detects a change in an application-specific
quality metric. The reconfiguration process consists of three major steps: (1) generation of a new plan by a
distinguished coordinator node; (2) ensuring required semantics prior to freezing data transmission; and (3)
deploying the new plan and resuming data transmission. Step 1 uses the planning algorithm described earlier,
optionally reusing some of the partial solutions constructed during initial deployment. Step 3 involves a
standard two-phase commit like procedure to synchronize reconfiguration activities among multiple nodes
along the path. We describe Step 2 in additional detail below.

Step 2 requires slightly different support for the three reconfiguration semantics described earlier. Since
activities for cases 1 and 2 are a subset of that for case 3, our description focuses on the latter. The underlying
problem is that to maintain semantic continuity and exactly-once semantics, any scheme must take into
account the fact that the portion of the data path affected by the reconfiguration can have stream data that
has been partially processed: in the internal state of drivers, in transit between execution environments, or
data that has been lost due to failures. Note that the soft-state requirement on its own does not provide any
guarantees on semantic loss or in-order reception.

Figure 4 shows an example highlighting this problem. To introduce some terminology, we refer to the
portion of the data path that needs to be reconfigured because of network changes (failures are an extreme
example) as thereconfigurable portion, and the components immediately upstream and downstream of
this portion with respect to the data path as theupstream pointanddownstream pointrespectively. In the
example, driverd0 is a source of MPEG data, driverd1 is an MPEG frame duplicator which produces
3 frames for each incoming frame, driverd2 is an MPEG frame composer which generates one MPEG
frame upon receiving four incoming frames fromd1, andd3 is a renderer of MPEG data. The reconfigurable
portion consists of driversd1 andd2. Consider a situation where system conditions change after the upstream
point d0 has output two frames, and the downstream pointd3 has received one frame. At this point, the
portion containingd1 andd2 cannot be reconfigured because doing so affects semantic continuity. It is
incorrect to retransmit either the second segment fromd0 whose effects have been partially observed atd3,
or the third segment, which would result in a loss of continuity atd3.
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Figure 4: An example of data path reconfiguration using semantics segments.

The reconfiguration protocol leverages the semantic segments and soft state restrictions placed on driver
functionality as follows. Intuitively, the first restriction allows us to infer which segments arriving at the
downstream point of the reconfigurable portion depend on a specific segment injected at the upstream point
and vice-versa, while the second makes it always possible, even if any internal driver state is reset, to
recreate the same output segment sequence at the downstream point by just retransmitting selected input
segments at the upstream. Our solution exploits these characteristics to provide the required guarantees by
just combining buffering and delayed forwarding of semantic segments at the upstream and downstream
points respectively with selective retransmission of segments that are incompletely delivered. The corre-
spondence between upstream and downstream segments is completely determined by driver characteristics
in the reconfigurable portion; the implementation just needs to track marker messages that demarcate seg-
ment boundaries.

This scheme uniformly handles both the situation where drivers continue error-free operation but the
data path needs to be reconfigured in response to system conditions, as well as the situation where link
or node errors cause partial driver state to be lost; the difference in the two situations is only whether the
protocol is executed on demand or always. For the first situation, we defer reconfiguration to the time when
the system can guarantee continuity and exactly once semantics for Case 3 (respectively, complete delivery
of a semantic segment for Case 2). Upon receiving an event that triggers reconfiguration, the upstream
point starts buffering segments while continuing to transmit them, in effect flushing out the contents of
intermediate drivers. The downstream point monitors the output segments arriving there, waiting until it
completely receives an output segment from upstream satisfying the property that all subsequent segments
correspond only to input segments from upstream point either buffered at the upstream point or not yet
transmitted(or for Case 2 the simpler requirement that all semantic segments that originate from the same
input segment are delivered). At this time, the system can be stopped and the reconfigurable portion replaced
by a semantically equivalent set of drivers. To restart, the upstream point retransmits starting from the first
segment whose corresponding output segment was not delivered.

In our example, reconfiguration works as follows (assuming Case 3 semantics). To start with, the up-
stream point (d0) starts buffering every segment it sends out after this time. When the downstream point
(d3) receives a complete upstream segment (in this case this happens when the third segment output byd2 is
received), it raises an event. The plan manager can now freezed0, and replaced1 andd2 with a compatible
driver graph. To restart,d0 retransmits starting from segment 5. In this cased3 does not need to discard
anything. Error recovery on this portion requiresd0 to buffer its output segments and have the downstream
point pass on segments tod3 only in units of 3 segments at a time.

6 Performance Evaluation

To evaluate our automatic planning and path reconfiguration approach, we measured the performance ben-
efits and run-time overheads achieved by two applications—web access and image streaming—running on
top of CANS for a wide range of network resource characteristics. We describe in turn our experimental
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platform, the performance of the automatic path creation strategy, and the overheads of path reconfiguration.

6.1 Experimental Platform

LAN

Edge Server GatewayCentral Server Mobile Client

wired link

N2L2N1L1N0
L0

Figure 5: A typical network path between a mobile client and an internet server.

For all of our experiments, we consider a prototypical network path between a mobile client and an
internet server as shown in Figure 5. The links involved in such a path include a high-bandwidth WAN link
(L0) between the central server and an edge server (N0), a broadband link (L1) between the edge server and
the gateway (N1) to the LAN the user might be on, and finally the wireless link (L2) connecting the user’s
device (N2) to this network.

Theweb access applicationconsists of a browser client and transcoding components that reduce down-
load times under low-bandwidth network conditions (say in a mobile access scenario) by dynamically com-
pressing text and/or degrading image quality. Previous research has shown that such an approach is effec-
tive [4, 13]. In this paper, we focus on how, for a range of network resource conditions, to automatically
select and map an appropriate set of components so as to minimize download time, taking as input only a
high-level specification of the transcoding components and a description of the target network. Theimage
streaming application consists of a simple downloadable applet that sets up a connection with a server,
receiving and displaying images periodically pushed by the latter. This application is representative of news
feeds and tickers on many financial web pages. For our application, we require that images are available at
the client within a certain time deadline, and that the transmission is secure.

Component Input/Output Types Load(ops/byte) Bandwidth Factor
ImageFilter F: Image−→ Image 1.64× 10−6 3.92

ImageResizer R: Image−→Image 8.335× 10−6 3.92
Zip Z: * −→ ZipType/* 1.3× 10−7 3.15

Unzip U: ZipType/*−→* 1.2× 10−7 0.32
Demultiplexer D: MIME −→ Image,Text negligible 1.0
Multiplexer M : Image,Text−→ MIME negligible 1.0
Encrypter E: * −→ Encrypted/* 4.35× 10−6 1.0
Decrypter D: Encrypted/*−→ * 4.35× 10−6 1.0

Table 1: Characteristics of components employed in the web access and image streaming applications.

Table 1 lists the characteristics of components used in the two applications. TheImageFilterand Im-
ageResizercomponents degrade image quality and theZip andUnzipcomponents work together to compress
text pages as required.DemultiplexerandMultiplexerenable different CANS paths for text and images, and
theEncrypterandDecryptercomponents help secure the path. The load values in Table 1 are normalized
with respect to a Pentium III 1 GHz machine, which has a computing power of1ops/second. The load and
bandwidth factor values were obtained by profiling component execution on representative data inputs: a
web page containing 14 KB text and six 24 KB JPEG images for the first application, and a 24 KB JPEG
image for the second. All experiments used the same data inputs that the components were profiled on. This
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is a simplifying assumption, but reasonable given our primary focus was evaluating whether our approach
could effectively adapt to multiple network conditions. Evaluating the effectiveness of the approach when
component characteristics may be imprecise is a topic deferred to future research.

6.2 Performance of Automatic Component Selection and Mapping

Platform Edge Server(N0) L1 Gateway(N1) L2 Client (N2) Plan

1 Medium Ethernet High 19.2 Kbps Cell Phone A
2 Medium Ethernet High 19.2 Kbps Pocket PC A

3∗ High Fast Ethernet Medium 57.6 Kbps Laptop B
4∗ High Fast Ethernet Medium 115.2 Kbps Laptop B
5 Medium Ethernet High 384 Kbps Pocket PC A
6∗ High Fast Ethernet Medium 576 Kbps Laptop B

7∗ Medium Fast Ethernet High 1 Mbps Laptop C
8 Medium Ethernet High 3.84 Mbps Pocket PC D
9 Medium Ethernet High 3.84 Mbps Laptop D
10 Medium DSL High 3.84 Mbps Laptop B
11 Medium DSL Firewall 3.84 Mbps Laptop B
12∗ Medium Fast Ethernet High 5.5 Mbps Laptop E

Relative computation power of different node types(normalized to a 1 GHz Pentium III node):
High = 1.0, Medium =0.5, Laptop =0.5, Firewall =0.25, Pocket PC =0.1, Cell Phone =0.05
Link bandwidths:
Fast Ethernet =100 Mbps, Ethernet =10 Mbps, DSL = 384 Kbps

∗Experiment conducted on real (as opposed to “sandboxed”) hardware.

Table 2:Twelve configurations representing different mobile network connectivity scenarios identifying the
CANS plan automatically generated in each case.

To model network conditions likely to be encountered along a mobile access path, we defined twelve
different configurations listed in Table 2, representing different network connectivity options and different
node capacities.1 These configurations are grouped into three categories, based on whether the mobile link
L2 exhibits cellular, infrared, or wireless LAN-like characteristics. Four of the configurations correspond
to real hardware setups (tagged with a *), the remainder were emulated using “sandboxing” techniques that
constrain CPU, memory, and network resources available to an application [3]. As before, the computation
power of different nodes is normalized to a 1 GHz Pentium III node.

Table 2 also identifies, for each platform configuration, the plan automatically generated by CANS
for the web access application, which are shown in Figure 6. For instance, CANS generates Plan C for
platform configuration 7: the placement of the ImageFilter and Zip components on the gateway machine
permit adaptation to the low bandwidth link between the gateway and the mobile client. Contrast this plan
with plan A (for configurations 1 and 2) where the gateway node now contains both an ImageFilter and an
ImageResizer component. The latter is required because the bandwidth reduction due to just the ImageFilter
component is insufficient to cross the 19.2 Kbps link.

Figure 7 shows the performance advantages of the automatically generated plans when compared to the
response times incurred for direct interaction between the mobile client and the server (denotedDirect in

1The bandwidth between the central server and edge server available to a single client is assumed to be 10 Mbps.
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Figure 6: Component placement for the five automatically generated plans.

the figure). The bars in Figure 7 are normalized with respect to the best response time achieved on each
platform (so lower is better). In all twelve configurations, the generated plans improve the response time
metric, by up to a factor of seven. Note that the lower response times come at the cost of degraded image
quality, but this is to be expected. The point here is that our approachautomatesthe decisions of when such
degradation is necessary. Figure 7 also shows that different platforms require a different “optimal” plan,
stressing the importance of automating the component selection and mapping procedure. In each case, the
CANS-generated plan is the one that yields the best performance, also improving performance by up to a
factor of seven over the worst-performing transcoding path.

It is interesting to note that CANS achieves substantial performance improvements despite run-time
overheads on the critical path. To understand whether other applications with different component charac-
teristics would yield similar improvements, we profiled our implementation to construct a timeline of the
operations involved in processing a client request for the web page. Figure 8 shows the overall timeline
for plan B running on platform configuration 10, and breaks down portions of this timeline into individual
operations performed by the CANS execution environment and the components themselves for processing a
single text and image packet. The original client request results in the downloading of the text portion of the
page, and is followed by requests for each of the six contained images. A text request is received by the edge
serverN1, which forwards it to the central server and waits for the latter to respond. Text responses comprise
several packets, each of which passes through the Demultiplexer and Zip drivers on the edge server, and the
Unzip and Multiplexer drivers on the client before being delivered to the browser application. Similarly
a response to an image request comprise multiple packets, each of which flow through the Demultiplexer,
ImageFilter, and ImageResizer drivers on the edge server and the Multiplexer on the client before being
delivered to the application.

The timeline shows that for this case study, CANS overheads are negligible and dominated by the round-
trip between the edge server and the central server (0.2 seconds on the text path and 0.16 seconds on the
image path). Even if this were not the case, CANS overheads (shown hatched in the figure) for retrieving data
from the network and supplying it to each driver in turn are small for all but very fine-grained components
(the Demultiplexer and Multiplexer). For the components used in this study, CANS incurs an average cost
of about 25µs per driver invocation, and we expect these overheads to improve significantly as the system is
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tuned for performance.

6.3 Performance of Data Path Reconfiguration

To evaluate the effectiveness of our path reconfiguration approach, we ran the image streaming application
under dynamically changing network conditions, letting the CANS infrastructure automatically generate and
reconfigure its access path. For this application, the three levels of reconfiguration semantics correspond to
no guarantees about continuity (Case 1), the guarantee that the application only sees complete images (Case
2), and that the application sees no data loss (Case 3). The base network configuration corresponds to
Platform 7 in Table 2, with two changes introduced 25 seconds and 50 seconds into the experiment. The
first change degraded the bandwidth between the client and the gateway (L2) to 440 Kbps from the original
1 Mbps. The second change modeled the transition of the network from (secure) wired connectivity to
(insecure) wireless connectivity. Since our focus was on measuring the overheads of the reconfiguration
procedure, our experiment had an external procedure generate the necessary events and coordinate with the
“sandbox” code to control bandwidth available to the application.

Gateway N1 Client N2

F

R

ImageFilter

ImageResizer

F

E

D

Encryption

Decryption

F R E D

F R

Start of
Reconfiguration

End of Reconfiguration
(Case 1 and 2)

End of Reconfiguration
(Case 3)

Start of
Reconfiguration

End of Reconfiguration
(Case 1 and 2)

End of Reconfiguration
(Case 3)

0.72

1.45

1.10

1.66

all done

Time

A

B

C

A

B

C

compute new plan
diff

plans
RMI to upstream
and downstream

RMI from
downstream

(ready)

RMI
(ack)

0.371

0.005

0.092 0.228

0.172

convey plan
to delegate

generate next
semantic segment

wait for downstream
to get segment

0.260 0.169

0.099

0.054

Figure 9: Path reconfiguration in the image streaming application. All times are in seconds.

Figure 9 shows the paths created by the planning procedure in response to the events (top left), and
how the reconfiguration procedure transitions among these paths along the execution timeline (top right).
The initial pathA contains only an ImageFilter component running on the gateway node. The first event,
triggered when bandwidth drops, results in the introduction of an additional component, the ImageResizer,
on the gateway node (pathB). Note that CANS reconfiguration is accomplished completely automatically,
without any involvement from the application code. Depending on the semantics that need to be supported,
the total time for reconfiguration is either 0.72 seconds (for Cases 1 and 2) or 1.45 seconds (for Case 3). The
path again gets reconfigured when the second event is received, corresponding to the switch between wired
and wireless connectivity; the new pathC now contains Encrypter and Decrypter components on the gateway
and client nodes to ensure secure transmission. As before, reconfiguration is achieved automatically, but
incurs slightly larger overheads (1.10 seconds for Cases 1 and 2, and 1.66 seconds for Case 3), because of
the additional work involved in orchestrating reconfiguration activities across multiple nodes.

Reconfiguration overheads of 1-2 seconds are acceptable for most applications running in mobile access
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scenarios. However, to better understand the contributing factors, we broke down the 1.45 seconds required
for Case 3 reconfiguration into four stages (bottom part of Figure 9): (1) construction of a new plan and
computing the delta from the current plan; (2) RMI calls to the upstream and downstream points to start
buffering and monitoring; (3) waiting for the reconfiguration condition to become true; and (4) the two-
phase procedure to install the new path and resume data transmission. Note that stage 3 takes different times
for different reconfiguration semantics (actually for this application, stage 3 can be bypassed for both Case
1 and Case 2), and stage 4 can be combined with stage 2 when it is possible to infer that the reconfiguration
condition is immediately satisfied (always true for Case 1). The cost breakdown shows that the dominant
contributors are plan creation (0.48 seconds) and cross-node handshaking using RMI (0.66 seconds), with
application-independent steps (gray blocks) incurring negligible overhead. These results are encouraging
because our current work has the potential to substantially reduce these two overheads: the first because
of a modified planning procedure, which reuses previously computed partial solutions, and the second by
avoiding use of RMI, instead leveraging an efficient control channel between execution environments.

7 Related Work and Discussion

The research described in this paper is very closely related to several recently proposed infrastructures that
aim to augment the traditional notion of a network path with injected application-specific components, either
only at the end points [14, 8, 11] or throughout the path [17, 10, 2, 20, 4, 1, 22, 6]. Rather than describe
all such systems, we focus our attention here on the subset which offer some form of automatic support for
path creation and reconfiguration.

The Ninja project’s Automatic Path Creation (APC) service [6], also used in the Universal Inbox in-
frastructure [15], can be used to create paths between various end devices and services. Both APC and
our approach formulate the component selection problem in terms of type compatibility, however, there
are significant differences. At a high level, unlike the performance-oriented focus of our work, APC is a
function-oriented method, which ignores network link properties and node and link resource constraints.
A consequence of this difference is that a shortest-path approach to planning suffices for Ninja (with the
restriction that a data type can appear only once along a path), while we need a more sophisticated dy-
namic programming-based approach. Other differences include our support for path reconfiguration and a
more general notion of data, stream, and augmented types, which were motivated by a desire to model link
characteristics in a unified fashion and contrast with Ninja’s notion of a relatively simple string type.2

Kiciman and Fox [9] have proposed a general path infrastructure framework for composing mediators
distributed across a network of machines. This infrastructure builds upon Ninja’s APC service and suffers
from the same limitations. Furthermore, this approach separates out logical path creation (choice of com-
ponents) from the mapping of components to physical resources. As we have shown in Section 6, such
decoupling can produce suboptimal solutions because of poor or redundant component placement.

Recent work in the Scout project [12] has looked at a template based path construction algorithm for
delivering media objects that takes into consideration the latter’s resource requirements, user preferences,
node capabilities, and programmer-provided path rules. This work shares its performance focus with ours,
however, the primary difference arises from the fact that unlike our high-level type-driven approach, here
a programmer must a priori construct path templates and store them into a central database. The Scout
algorithm takes a lower-level approach, simply choosing an appropriate template and instantiating it based

2We must note that Ninja’s researchers believe that types are inadequate as a lookup mechanism for components since they do
a poor job of capturing semantics. To an extent, this concern is alleviated by our extended notion of data types that can include
type-specific attributes. More importantly, the component selection problem can be viewed at multiple levels: semantics-driven
selection figures at the highest level, whereas type-based selection and mapping, which are the focus of this paper, are lower-level
but equally important concerns.
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on other programmer-provided rules that decide whether or not a component can be created on a resource.
We avoid this last problem because of the application-level nature of our components, which rely on a
relatively standard execution environment interface (the Java virtual machine in our case). On the flip side,
the Scout approach does a better job of modeling low-level resource properties such as the availability of a
specific kind of video hardware or NIC.

The Panda project [16] also proposes a planning scheme for optimally placing network-level components
to modify an application’s data stream in response to unfavorable network conditions. While two schemes
are discussed, one based upon selection from a reusable plan set and the other based on exhaustive constraint
space-based search, to the best of our knowledge these schemes have not yet been implemented or evaluated
with real applications.

Our work is also complementary to emerging standards for delivery of content to small devices with
different user preferences in that it aims to automate the process of setting up these delivery paths. Two
such standards have been proposed recently: the CC/PP (Composite Capabilities/Preference Profiles) pro-
tocol from the World Wide Web Consortium (W3C) [21], and the UserAgent protocol from the Wireless
Application Protocol (WAP) forum [19].

To the best of our knowledge, the approach described in this paper is one of the first schemes to not only
consider the functionality of the data path, but also takes both network link properties and node resource
constraints into account. Our work is also one of the first to perform a detailed evaluation of the overhead
of path creation, and reconfiguration, and measure the performance of the deployed paths. While we expect
the performance to improve as the CANS implementation is further tuned, the numbers in this paper provide
a concrete baseline for the potential of automatic approaches for constructing network-aware access paths.

8 Conclusions

This paper has presented an automatic approach for the dynamic deployment of intermediary components
along client-server paths, which can be efficiently reconfigured at run time, to enable ubiquitous, network-
aware access to internet services. This approach leverages a type-compatibility formulation of the problem,
which takes as input only high level specifications of component behavior and network route characteristics.
Novel to this formulation is the fact that constraints due to node and network link characteristics are naturally
integrated into the type model simply by modeling the latter as entities that transform the type of data passing
across them. This formulation lends itself to a dynamic programming based polynomial-time algorithm,
which simultaneously selects and maps appropriate components to optimize a global metric such as client
throughput or response time. This algorithm is complemented by an efficient semantics-preserving data
path reconfiguration strategy. Experiments with the planning algorithm and reconfiguration in the contexts
of a web access scenario and an image streaming application using the CANS infrastructure under various
network and end device characteristics have verified that automatic path creation and reconfiguration is
both feasible and can yield substantial performance benefits. Thus, in contrast to current-day static access
paths to internet services, our work argues for a flexible approach where paths leading to these services are
automatically and dynamically composed to satisfy user preferences and network resource constraints.

CANS is one component of a larger project, Computing Communities, which focuses on distribution
middleware for legacy applications. Our future work involves generalizing the CANS planning algorithms
to handle efficient reconfiguration in the context of multi-ported components, and integrating CANS with
related efforts emphasizing resource management and security issues.
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